Instruct-CZ > BIOCEV

Czech Infrastructure for Intergrative Structural Biology


Instruct Flagship Service/Technology

Biophysical characterization - Instruct-CZ

Techniques are provided for the biophysical characterization of the structure, function and stability of biological macromolecules like proteins, nucleic acids, lipids and their complexes (Circular Dichroism, Differential Scanning Fluorescence, Differential Scanning Calorimetry, Dynamic Light Scattering, UV/Vis Spectrometer) and kinetic and thermodynamic parameters of their iteration (Microscale Thermophoresis, Surface Plasmon Resonance, Isothermal titration Calorimetry).

View All Biophysical Characterisation at Instruct


CIISB - Czech Infrastructure for Integrative Structural Biology is formed by two Centers of Excellence for Structural Biology constructed within the projects CEITEC – Central European Institute of Technology, Brno and BIOCEV - Biotechnology and Biomedicine Centre, Vestec, Prague-West. CEITEC and BIOCEV have been financed from the EU Structural Funds through the Operational Program Research and Development for Innovation, priority axis 1 – European Centers of Excellence, which is managed by the Ministry of Education, Youth and Sports of the Czech Republic. The Czech structural biology community is represented by the Czech Society for Structural Biology (CSSB), which is forming a national link to INSTRUCT. CIISB affiliation with INSTRUCT contributes to the development of human resources in research, attracts qualified national and international researchers, and enables efficient dissemination of knowledge and expertise within INSTRUCT, as well as efficient use of the infrastructure.

BIOCEV Core facilities (CF) for Integrative Structural Biology

The core facilities for structural biology in Biocev are organized under the Centre of molecular structure, run by the Institute of Biotechnology, Academy of Sciences of the Czech Republic.

The BIOCEV Centre of molecular structure provides access to technologies installed in the newly constructed building of the Centre in Vestec near Prague (construction completion in 2015, for details of the construction, please visit

CF Crystallization of proteins and nucleic acids: operational since January 2016

Key equipment: robot for nanovolume crystallization drop setup with automated setup screening (Gryphon), crystallization hotel for automated monitoring of crystallization experiments (Formulatrix RI1000 with UV imaging), dedicated rooms with controlled temperature enabling crystal manipulation without temperature disturbance, several high resolution stereomicroscopes for crystal manipulation, equipment for crystallization under defined atmosphere (e.g. oxygen-free), in-drop dynamic light scattering Spectrolight 600.

Expertise: Classical and robotic crystallogenesis with remote experiment monitoring in three dedicated laboratories with strictly controlled temperature regimes with full backup. Automated screening of variation of crystallization conditions and its effects. Anaerobic crystallization and manipulation of biomacromolecules.

Open-access: Assisted use of all experimental equipment for crystallogenesis, limited capacity for service crystallogenesis.

CF X-ray diffraction: operational since January 2016

Key equipment: X-ray diffractometer D8 Venture for precise measurements with the MetalJet D2 X-ray source detector Photon 2, kappa goniometer, and in-situ motorized stage ISX.

Expertise: Manual and robotic screening for X-ray diffraction of macromolecular and small molecule samples, automated evaluation of suitability for structural studies. In-house data collection and processing, in-situ evaluation of sensitive crystallisation targets, experimental phasing experiments – evaluation for MIR, SAD and MAD approaches, synchrotron-based data collection and processing, structure solution from small molecules to large protein-protein or protein-nucleic acid complexes, structure finalization and interpretation.

Open-access: Assisted use of all experimental equipment, hosting prolonged experiments (in-house experimental phasing), “service” data collection at synchrotron sources of radiation in individual cases, capacity dedicated to methods development, long-term documented cryo-storage.

CF Biophysical techniques: fully operational since January 2016.

Key equipment: Biorad ProteOn surface plasmon resonance, Microscale thermophoresis, Differential scanning fluorimeter, Isothermal titration calorimeter, UV CD spectrometer, Dynamic light scattering equipment

Expertise: Characterisation of intermolecular interactions by calorimetry, surface plasmon resonance, CD spectrometry, microscale thermophoresis, DFS, light scattering. Identification of ligands for macromolecular targets based on determination of binding constants and kinetic profiles of interacting molecules.

Open-access: Assisted use of all experimental equipment and “service” characterisation of interactions.

CF High resolution mass spectrometry: operational since January 2016.

Key equipment: High-resolution mass spectrometer (MALDI/ESI 15T solarix XR) and multidimensional ultra power liquid chromatography system

Expertise: Qualitative characterization of molecules/molecular assemblies – from small organic molecules (metabolites) over biomolecules (oligosaccharides, nucleic acids, proteins) to supramolecular biopolymer complexes. The utilization of high resolution mass spectrometry (15T FT-ICR MS) to determine the composition of molecules (metabolites, nucleic acid, proteins, and carbohydrates) based on accurate mass measurements and fragment pattern. FT-ICR MS will be equipped with atmospheric pressure ionization technique (electrospray) and various types of vacuum ionization techniques (laser desorption, matrix-assisted laser desorption). Also FT-ICR MS will be able to perform sustained off-resonance irradiation, collision-induced and electron transfer/capture dissociations. Mass spectrometric cutting-edge analysis of post-translational modifications, and of structural states of proteins and complexes in solution. Combination of covalent surface labelling, isotope (H/D) exchange, chemical cross-linking, mass spectrometry and protein structure modelling are used for protein conformational studies and the characterization of protein/ligand non-covalent interactions.

Open-access: Separation of protein mixtures • intact protein analysis • Peptide/protein/metabolite profiling • Protein identification • Characterization of protein modifications • Protein/metabolite quantification • protein surface covalent labelling • chemical cross-linking • H/D exchange • Data processing and interpretation of mass spectrometric data • Teaching courses, hands-on courses • Consulting services, specific intra- and intermolecular interactions.

Visit This Centre


    Visit this centre and more by submitting a proposal for access.

    Submit Proposal

    Scientific Contacts

    Admin Contacts

    Technical Contacts